If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-102x+60=0
a = 36; b = -102; c = +60;
Δ = b2-4ac
Δ = -1022-4·36·60
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-102)-42}{2*36}=\frac{60}{72} =5/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-102)+42}{2*36}=\frac{144}{72} =2 $
| -5x+4x=x+7+3 | | 15x+142=13x+170 | | 4x-3=10x-5 | | 0.5(2a-10)=-18 | | 10=14w-9w | | 13-3x=9=8x+4-11x | | 2.5w=5.7 | | 10(12+h)=58 | | 7.5k+1+-6.5k=3 | | 5x+25=17x-41 | | 3+8x=12x-13 | | 9t^2-16t-3=0 | | -2h=-12 | | 2(–3z+8)=–38 | | 15=7+6m-12 | | 2x+3=2x−5 | | -8r-16r—10r—18=-10 | | 13r+5=5 | | 4=17+6m+49 | | Y=3(x-5)3+11 | | n/9=−11 | | 4u-7u-1=-4 | | n9=−11 | | -17-9a=7(6a-8) | | 3x=(x+2)+5 | | 10=2(t+1)+2 | | a+50+3a+3a=365 | | 9z+7-3z=25-3z | | -8+6(d-3)=34 | | 12=2(d-7) | | 6(36x-2)=38(-16-4x | | 14n-18n=4 |